In the past week you’ve probably eaten crops that wouldn’t exist in nature, or that have evolved extra genes to reach freakish sizes.
You’ve probably eaten “cloned” food and you may have even eaten plants whose ancestors were once deliberately blasted with radiation. And you could have bought all this without leaving the “organic” section of your local supermarket.
Anti-GM dogma is obscuring the real debate over what level of genetic manipulation society deems acceptable.
Genetically-modified food is often regarded as something you’re either for or against, with no real middle ground.
Yet it is misleading to consider GM technology a binary decision, and blanket bans like those in many European countries are only likely to further stifle debate. After all, very little of our food is truly “natural” and even the most basic crops are the result of some form of human manipulation.
Between organic foods and tobacco engineered to glow in the dark lie a broad spectrum of “modifications” worthy of consideration. All of these different technologies are sometimes lumped together under “GM”. But where would you draw the line?
SEE ALSO: These 7 everyday items wouldn’t exist as we know them without GMOs
MORE: 9 food labels that probably don't mean what you think they mean
1. (Un)natural selection
Think of carrots, corn or watermelons – all foods you might eat without much consideration.
Yet when compared to their wild ancestors, even the “organic” varieties are almost unrecognizable.
Domestication generally involves selecting for beneficial traits, such as high yield. Over time, many generations of selection can substantially alter a plant’s genetic makeup. Man-made selection is capable of generating forms that are extremely unlikely to occur in nature.
2. Genome duplications
Unknowing selection by our ancestors also involved a genetic process we only discovered relatively recently.
Whereas humans have half a set of chromosomes (structures that package and organize your genetic information) from each parent, some organisms can have two or more complete duplicate sets of chromosomes. This “polyploidy” is widespread in plants and often results in exaggerated traits such as fruit size, thought to be the result of multiple gene copies.
Without realizing, many crops have been unintentionally bred to a higher level of ploidy (entirely naturally) as things like large fruit or vigorous growth are often desirable. Ginger and apples are triploid for example, while potatoes and cabbage are tetraploid. Some strawberry varieties are even octoploid, meaning they have eight sets of chromosomes compared to just two in humans.
3. Plant cloning
It’s a word that tends to conjure up some discomfort – no one really wants to eat “cloned” food. Yet asexual reproduction is the core strategy for many plants in nature, and farmers have utilized it for centuries to perfect their crops.
Once a plant with desirable characteristics is found – a particularly tasty and durable banana, for instance – cloning allows us to grow identical replicates.
This could be entirely natural with a cutting or runner, or artificially-induced with plant hormones. Domestic bananas have long since lost the seeds that allowed their wild ancestors to reproduce – if you eat a banana today, you’re eating a clone.
See the rest of the story at Business Insider